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2-Dimensional Speckle Tracking
Echocardiography predicts severe coronary
artery disease in women with normal left
ventricular function: a case-control study
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Abstract

Background: Women who have coronary artery disease (CAD) often present with atypical symptoms that may lead
to misdiagnosis. We assessed strain, systolic strain rate and left ventricular dyssynchrony with 2- dimensional-
speckle tracking echocardiography to evaluate its use as a non-invasive method for detecting CAD in women with
normal ejection fraction compared with healthy women controls with a normal angiogram.

Methods: We included 35 women with CAD confirmed by coronary angiography and a positive exercise stress
echocardiography and 35 women in a control group with a low pretest probability of CAD, normal angiogram and
a normal stress echocardiography with normal EF.

Results: Statistically significant 2D-STE findings for the CAD vs control groups were as follows for the mean of: global
circumferential strain (CS) (−19.4% vs −22.4%, P = .02); global radial S (49% vs 34%, P = .03); global radial SR (2.4 s−1 vs 1.
9 s−1, P = .05); global longitudinal LV S (GLS) (−14.3% vs −17.2%, P < .001). For mechanical dyssynchrony, SD of the GLS
time-to-peak (TTP) was computed (99 vs 33 ms, P < .001). The receiver operating characteristic and area under the
curve (AUC) were calculated. A cutoff value of 45 ms for 1 SD of the longitudinal S TTP had 97% sensitivity and 89%
specificity (AUC, 0.96). GLS cutoff value of −15.87% had 71% sensitivity and 74% specificity; AUC, 0.74 in differentiating
CAD and control groups. The combined GLS, CS, and SD of the longitudinal S TTP had an AUC of 0.96 (sensitivity 97%,
specificity 86%). Interclass correlations of the GLS segment and GLS TTP measurements were 0.49 (95% CI, 0.227-0.868)
and 0.74 (95% CI, 0.277-0.926), respectively.

Conclusion: In women with a normal echocardiogram and LVEF, CAD can be identified by dyssynchrony and abnormal
strain values, as evidenced by 2D-STE.
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Background
Cardiovascular disease is the leading cause of morbidity
and mortality throughout most of the world today, repre-
senting 31% of all deaths [1]. Significant advances have been
made in the diagnosis and treatment of cardiovascular dis-
ease, but most have been tailored to the recognition and
treatment of the disease in men [2]. Substantially less

research has been done to study the growing issue of the
disease in women [3]. Women tend to present with atypical
symptoms and experience coronary artery disease (CAD)
later in life than men. They also have a higher incidence of
morbidity and mortality when CAD does occur, including
myocardial infarction and sudden death [4]. Women also
have a different atherosclerotic profile than men, primarily
composed of microvascular disease without substantial ob-
structive CAD on imaging [5]. Because of this finding, it
has been suggested that CAD in women be referred to as
“female specific ischemic heart disease” [5–7].
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Echocardiography is an important noninvasive method
for assessing cardiovascular function and mechanics [8].
Two-dimensional–speckle tracking echocardiography
(2D-STE) has proven to be an important recent advance
[8, 9]. 2D-STE software tracks groups of intramyocardial
speckles to derive myocardial deformation in 3 imaging
planes, allowing measurement of parameters such as
strain (S) and systolic strain rate (SRs) of the myocardium
[10]. Measurements of S and SRs are more sensitive than
standard echocardiographic parameters for assessing left
ventricular (LV) function of many clinical conditions, in-
cluding cardiomyopathy and CAD [11–14]. 2D-STE has
been validated as an accurate, angle-independent, nonin-
vasive method for evaluating cardiac mechanical function
[15]. Furthermore, STE by velocity vector imaging (VVI)
has been confirmed as an accurate method to measure S
and SRs and to quantify myocardial function regionally
and globally [16].
The aim of this study was to assess 2D-STE parameters

of S, SRs, and time-to-peak (TTP) measurements, as well
as LV dyssynchrony in healthy women to define normal
values and then to compare these to values of women with
known CAD. By so doing, we hoped to demonstrate that
2D-STE can be used to predict CAD in women with a
normal ejection fraction (EF).

Methods
Study population
We reviewed electronic health records of women who
underwent an exercise stress echocardiography, followed
by cardiac angiography that showed severe CAD. Severe
CAD was classified as stenosis of more than 50% in 1 or
more vessels and was further sub-classified depending on
the number of affected vessels [17]. This classification was
based on current practice guidelines which place patients
with higher than 50% stenosis at high risk for adverse car-
diac events [18–21]. All tests were performed at Mayo
Clinic from January 1, 2006, through December 31, 2006,
and coronary angiography had to be completed within
6 months of the treadmill test. Patients were excluded if
they had a resting LVEF less than 50%, a contrast com-
puted tomography scan, atrial fibrillation, more than mod-
erate valvular disease, or studies with poor image quality.
The control group comprised women with a low probabil-
ity of CAD, ie, normal EF and a normal stress echocardio-
gram and coronary angiogram performed at Mayo Clinic
from 2009 through 2010. The Mayo Clinic Institutional
Review Board approved the study, and all patients pro-
vided written consent to allow review of their electronic
clinical records and images.

Standard echocardiographic examination
Echocardiographic imaging was performed by a registered
diagnostic cardiac sonographer using a standardized

protocol in the Mayo Clinic echocardiography laboratory.
Three commercial echocardiographic systems were used: 1)
Sequoia C512 (Siemens AG, Munich, Germany) with a
4 V1 transducer (1-4 MHz); 2) Vivid 7 (General Electric
Co, Fairfield, Connecticut) with an M4S transducer (1.5-
4.3 MHz); and 3) iE33 (Royal Philips Electronics,
Amsterdam, The Netherlands) with an S5-1 transducer (1-
5 MHz). The Sequoia C512 was used for all women in the
control group. Images were obtained at a mean (SD) frame
rate of 41 (5) MHz in the CAD group.

Speckle tracking imaging
Three-beat cine-loop clips were selected from the para-
sternal short-axis views at the papillary muscle level and
from 3 apical views (2-chamber, 3-chamber, and 4-
chamber). These images were exported and then analyzed
offline with syngo VVI software (Siemens Medical Solu-
tions USA, Inc., Malvern, Pennsylvania). The process
began with manual endocardial to mid-wall tracing of a
single frame at end systole by a point-click approach, with
a region of interest that covers at least 90% of the myocar-
dial wall thickness. The periodic displacement of the tra-
cing was automatically tracked in subsequent frames.
Tissue velocity was determined by the software, according
to a shift of the points divided by time between B-mode
frames. The software automatically calculated S and SRs
from the velocity. The TTP of S and SRs was measured
automatically by the software, with the beginning of the
QRS complex as a reference. The SD of longitudinal S for
16 segments was calculated. LV dyssynchrony was defined
according to the method proposed by Yu et al. [22], de-
scribed below. VVI data were exported into an Excel 2003
spreadsheet (Microsoft Corp, Redmond, Washington) for
further analysis (Fig. 1).

Reproducibility
Interobserver variability was assessed in 10 randomly se-
lected patients for whom 2D-STE examinations were inde-
pendently performed by 2 investigators (S.B.G., J.A.K.) 4 to
8 weeks after the initial analysis. The intra-subject reprodu-
cibility of data was evaluated with the intra-class correlation
coefficient, which measured the strength of the association
between the measured parameters [23–25].

Statistical analysis
Data are presented as mean (SD) for continuous variables
and as percentages for categorical variables. Differentiation
between the CAD and control groups was performed with
univariate and multivariate logistic regression. Each global
and segmental S and SRs value was assessed as a predictor
of the CAD group in a model. Diagnostic accuracy of S and
SRs values was evaluated using receiver operating charac-
teristic (ROC) analysis. We used the concordance correl-
ation coefficient (CCC) for interobserver variability and
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calculated the absolute difference and the percentage differ-
ence between the 2 observers. A P value of less than .05
was considered statistically significant. JMP 9.0.1 statistical
software (SAS Institute Inc., Cary, North Carolina) was
used to perform the statistical analysis.

Results
Participant characteristics
The mean (SD) values for the CAD and control groups (35
women in each group), respectively, were as follows: age,
70 (8) vs 35 (13) years (P < .001); body mass index, 27 (5)
vs 26 (7) kg/m2 (P = .23); heart rate, 76 (12) vs 75 (11) beats
per minute (P = .94); systolic blood pressure, 137 (19) vs
110 (15) mm Hg (P < .001); diastolic blood pressure, 74
(10) vs 65 (10) mm Hg (P = .004); PR interval, 165 (21) vs
143 (17) ms (P < .001); and QRS duration, 84 (10) vs 88
(12) ms (P = .17). CAD was classified as follows: mild dis-
ease (<50% occlusion), 8.6% (3 patients); and severe 1-
vessel disease, 31.4% (11 patients); 2-vessel disease, 31.4%
(11 patients); and 3-vessel disease, 29% (10 patients). The
most common indications for further diagnostic studies in
the CAD group were fatigue and substantial comorbidities
or risk factors for CAD. Only 3% of controls had comorbid-
ities, such as hypertension and hyperlipidemia. Other clin-
ical characteristics of the groups are shown in Table 1.

Standard echocardiographic data
The mean (SD) 2D echocardiographic findings for the
CAD group vs the control group, respectively, were as fol-
lows: EF, 60%(5) vs 63% (4) (P = .02); LV systolic dimen-
sion, 29 mm (5) vs 30 mm (3) (P = .52); early mitral inflow
velocity (E) wave, 0.76 (0.25) m/s vs 0.84 (0.23) m/s
(P = .16); and early diastolic mitral annular tissue velocity
(e′), 0.09 (0.14) m/s vs 0.12 (0.03) m/s; (P < .001). Vari-
ables with higher (mean [SD]) values in the CAD group
were the E/e′ ratio (11.9 [1] vs 7.8 [1]; P = .002); peak vel-
ocity of late transmitral flow (0.89 [0.19] m/s vs 0.54 [0.22]
m/s; P<.001); tricuspid regurgitation velocity (2.73 [0.76]

vs 2.22 [0.25]; P = .002); Right ventricular systolic pressure
(33.5 [8] vs 25.0 [6]; P < .001); left atrial volume index (29
[10] vs 26 [13]; P = .01); and left ventricular diastolic di-
mension (46.4 [6] mm vs 46.3 [4] mm; P = .95).

Global longitudinal, circumferential and radial S and SRs
Values in the CAD group vs the control group (mean
[SD]) were as follows: global longitudinal strain (GLS)
(average, 16 segments) (−14.3% [4] vs −17.2% [3];
P < .001); global longitudinal SRs (−0.92 s−1 [0.2] vs
−0.99 s−1 [0.1]; P = .07); global circumferential strain (CS)
(−19.4% [6] vs −22.4% [4]; P = .02) and global circumfer-
ential SRs (−1.3 s−1 [0.4] vs −1.4 s−1 [0.3]; P = .16) Values
(mean [SD]) were higher in the CAD group than in the
control group for the following: global radial S (49% [37]
vs 34% [16]; P = .03); global radial SRs (2.4 s−1 [1.5] vs

Fig. 1 Left ventricular deformation. a Normal pattern left ventricular deformation. b Coronary artery disease. These images were exported and
then analyzed offline with syngo VVI (velocity vector imaging) software

Table 1 Group characteristics

Groupa

Characteristic Coronary artery disease Control P

Age, mean (SD), y 70 (8) 35 (13) <0.001

BMI, mean (SD) 27 (5) 26 (7) 0.23

SBP, mean (SD) 137 (19) 110 (15) <0.001

DBP, mean (SD) 74 (10) 65 (10) =0.004

HR, mean (SD) 76 (12) 75 (11) 0.94

PR interval, mean (SD) 165 (21) 143 (17) <0.001

QRS duration, mean (SD) 84 (10) 88 (12) 0.17

Hypertension 71 3 <0.001

Hyperlipidemia 69 3 <0.001

Dyspnea 100 0 <0.001

Fatigue 23 0 <0.001

Diabetes mellitus 9 0 <0.001

Smoker, ever 26 3 <0.001

Abbreviations: BMI body mass index, DBP diastolic blood pressure, HR heart
rate, SBP systolic blood pressure
a% unless otherwise noted
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1.9 s−1 [0.7]; P = .05); and SD global longitudinal LV S
TTP (99 ms [43] vs 33 ms [17]; P < .001) (Fig. 2, Table 2).
The differences in global radial S, global radial SR, and 1
SD of the GLS TTP remained significant after adjustment
for heart rate, blood pressure, LVEF, and body mass index
in a multivariate model (odds ratio [OR], 5.4 [95% CI,
1.9-54.0]; P<.001), as well as for global longitudinal SRs
(OR, 10 [95% CI, 2.5-203.9]; P < .001). In addition, we ac-
quired data for the left ventricular mass index (LVMi) in
order to classify patients with a value of >95 g/m2 as hav-
ing left ventricular hypertrophy. According to this classi-
fication, six patients in the CAD group had left
ventricular hypertrophy. However, the mean LVMi was
92 g/m2 (SD 31 g/m2) in the CAD group and 74 g/m2

(SD 15 g/m2). When we added LVMi to the multivariate
model, dyssynchrony remained significant with a p value
<0.01. Age proved to be a strong predictor (OR 1.25 [95%
CI, 1.14-1.49]; P < .001); however, dyssynchrony contin-
ued to remain significant after adjusting for this variable.
The cutoff value of −15.87% for GLS had 71% sensitivity
and 74% specificity in differentiating the CAD group
from the control group, with a ROC area under the curve
(AUC) of 0.74 Table 3). The cutoff value of −21.31% for
CS had 60% sensitivity and 60% specificity for differenti-
ating the CAD group from the control group, with an
AUC of 0.64 (Table 3).

LV dyssynchrony
To assess mechanical dyssynchrony, the SD of GLS TTP
was computed for the CAD and control groups, respect-
ively (99 [43] ms vs 33 [17] ms; P < .001) (Table 2). To
standardize for these differences, we followed the
method described by Yu et al. (22). In brief, the mean of
the SD plus 2 SDs for the control group were calculated
from the GLS TTP. With this method, 65.87 ms was the
cutoff value; 1 patient (3%) in the control group and 23
(66%) in the CAD group were above that value
(P < .001). Values for longitudinal dyssynchrony for the
control group and CAD group were significantly differ-
ent (P < .001) (Fig. 2b). In addition, by using a cutoff of
45 ms for 1 SD LV longitudinal TTP, we were able to de-
tect CAD in women with a sensitivity of 97% and speci-
ficity of 89%, with an AUC of 0.96 (Fig. 3a, Table 3).
When we combined GLS, CS, and the SD of the LV lon-
gitudinal TTP, the sensitivity to detect CAD was 97%
and specificity was 86% (Fig. 3b, Table 3).

Feasibility and reproducibility of S and systolic TTP
measurements
STE tracking accuracy was assessed visually by one of
the authors (R.T.H.). Measurements of S and TTP with
acceptable tracking were feasible in 94.3% of the seg-
ments of the CAD group and in 97.1% of the segments

Fig. 2 Differences between the coronary artery disease and control groups. a Global LV longitudinal strain (P < .001). b dyssynchrony (P < .001).
c Global radial S (P = .03). d Global circumferential strain (P = .02). LV indicates left ventricle; TTP, time-to-peak
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in the control group. The intraobserver mean (SD) dif-
ferences in longitudinal S and TTP variability were 8%
(4%) and 7% (6%), respectively. The mean differences in
CS and SRs variability were 6% (5%) and 10% (18%), re-
spectively. The interobserver mean (SD) differences in
variability for longitudinal S and SRs were 9% (8%) and
9% (5%), respectively. The CCC was calculated from 10
patients to compare reproducibility between the 2 exam-
iners (J.A.K., S.B.G.). The CCC values for global longitu-
dinal S and longitudinal S TTP were 0.922 (95% CI,
0.723-0.979) and 0.79 (95% CI, 0.446-0.931), respectively.
Analysis was done using MedCalc software, version
14.10.2 (MedCalc, Ostend, Belgium).

Discussion
We performed a retrospective study to evaluate the clin-
ical and echocardiographic variables of patients with doc-
umented CAD and compared them to patients with no
CAD [26]. To our knowledge, this is the first study to
measure S, SRs, TTP, and dyssynchrony in a population of
women with known CAD. Our main findings were a sig-
nificant reduction in longitudinal and CS and dyssyn-
chrony in the CAD group compared with the control
group. These findings were consistent in all longitudinal
views (2-, 3-, and 4-chamber) and globally. The differences
remained significant after adjusting for other clinical vari-
ables, such as heart rate, LVEF, left ventricular hyper-
trophy, blood pressure, body mass index, body surface
area, and hyperlipidemia in a multivariate model analysis.

In addition, we were able to predict CAD using dys-
synchrony with 97% sensitivity and 89% specificity and
an AUC, 0.96. The results clearly show that GLS, longi-
tudinal TTP, and CS were reduced, even though right
ventricular S remained normal; this finding suggests that
longitudinal S and TTP impairment occur early in re-
sponse to insults that might result from CAD.
Other noninvasive methods have been used to evaluate

the risk for CAD in women, including measurements of
high-sensitivity C-reactive protein (HsCRP) and coronary
artery calcium scoring [27]. The role of HsCRP has not
been fully elucidated in studies to date. However, in
women with metabolic syndrome, high levels of HsCRP
have been found to correlate with a doubled risk of future
cardiovascular events when women with this condition
are compared with women who have metabolic syndrome
but low levels of HsCRP [27]. In the MESA trial (Multi-
Ethnic Study of Atherosclerosis), the coronary artery
calcium score was shown to be a more sensitive risk-
prediction tool than even the Framingham risk score for
congestive heart disease and CAD in low-risk populations,
demonstrating that the presence of any coronary calcium
was associated with a 6-fold increased risk of CAD [28].
Although more studies of HsCRP and coronary artery cal-
cium are needed, these methods represent advances being
made in the noninvasive detection and risk assessment of
CAD in women [29]. The MESA study particularly shows
a relative inadequacy of the Framingham risk score for
predicting CAD in women and highlights the need for

Table 2 Longitudinal and circumferential strain, systolic strain rate, and dyssynchrony

Groupa

Variables Coronary artery disease, Mean (SD) Control, Mean (SD) P Value

Global longitudinal LV strain, % −14.3 (4) −17.2 (3) <.001

Global longitudinal systolic strain rate, s−1 −0.92 (0.2) −0.99 (0.1) 0.07

Global longitudinal LV strain TTP, ms 399 (65) 381 (46) <.001

1SD Global longitudinal strain TTP, ms 99 (43) 33 (17) <.001

Global circumferential strain, % −19.4 (6) −22.4 (4) 0.02

Global circumferential systolic strain rate, s−1 −1.3 (0.4) −1.4 (0.3) 0.16

Global radial strain, % 49 (37) 34 (16) 0.03

Global radial systolic strain rate, s−1 2.4 (1.5) 1.9 (0.7) 0.05

Abbreviations: LV left ventricular, TTP time-to-peak
aMean (SD) unless otherwise indicated

Table 3 Data for receiver operating characteristic curves

Measurement Cutoff value Sensitivity, % Specificity, % AUC

Global longitudinal strain, % −15.87 71 74 0.74

1 SD LV longitudinal TTP, ms 45 97 89 0.96

2 SD longitudinal strain TTP, ms 90 97 89 0.96

Global circumferential strain, % −21.31 60 60 0.64

Combined plot (global longitudinal strain, circumferential strain, SD longitudinal TTP LV) NA 97 86 0.96

Abbreviations: AUC area under the curve, LV left ventricular, NA not applicable, TTP time-to-peak
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better assessment of women in the low-risk category. We
present our study as an adjunctive approach to the novel
assessment of CAD risk [30].
CAD is an increasing concern in women, and as de-

scribed earlier, more novel methods are needed to better
predict its presence and severity. As women present to
the clinic with nonspecific symptoms of CAD, clinicians
need feasible diagnostic procedures to assess risk and
likelihood of disease in order to better approach patient
care. The findings of our study have the potential to
greatly impact the advances in early detection and risk
stratification of CAD in women, which could lead to
preservation of cardiac function and a decrease in over-
all morbidity and mortality [22].
On the basis of our research, we believe that S and dys-

synchrony parameters, measured by 2D-STE, could predict
CAD in a population of symptomatic and asymptomatic
women with normal EF. Our current study validates the
need for a larger longitudinal study in women to determine
the initial decline in S and systolic SR and to determine
how this noninvasive method can project the overall de-
cline in cardiac function and the early signs of ischemic in-
sult. Such noninvasive measurements could allow a more
aggressive approach for patients with these characteristics.

Limitations
This study was retrospective and limited by its small size.
This resulted from the need to have a normal angiogram
in all the controls. Our population was older because
younger women were less likely to have an indication for
stress echocardiography. Furthermore, it was challenging
to find patients for the control group in the same age
range as the study population because of the higher preva-
lence of cardiac issues in patients older than 70 years. Al-
though our study population comprised older women

with known CAD, which placed them in the high-risk Fra-
mingham category, our results confirm another useful,
noninvasive method for stratifying patients who may have
equivocal risk factors for CAD to better determine the
need for aggressive medical management.

Conclusion
LV dyssynchrony measurements and longitudinal, circum-
ferential, and radial S shown on 2D-STE can predict severe
CAD in women with normal LVEF. This new technique
should be incorporated into the diagnostic algorithm when
there is suspicion that a woman might have CAD.
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